Dear Students, here are the answers for the book back exercises in Business Maths Solutions for Chapter 1 Applications of Matrices and Determinants. If you have any doubts, please reach out to us in the comments section.
Click here if you want to revise:
Important Formulas in Chapter 1 Matrices and Determinants
Examples in Chapter 1 Matrices and Determinants
Text Book Solutions for Exercise 1.2
Text Book Solutions for Exercise 1.3
Text Book Solutions for Exercise 1.4
Text Book Solutions Exercise 1.1

Order of A is 2 × 2
![]()
Consider the second order minor
![Rendered by QuickLaTeX.com \begin{vmatrix} 5 & 6\\ 7 & 8 \end{vmatrix}=40-42=-2\neq 0 \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-267b80f2bd0ad9e71d1ff649b31e64d0_l3.png)
There is a minor of order 2, which is not zero. ![]()
![Rendered by QuickLaTeX.com 1. (ii) \: \begin{pmatrix} 1 &-1 \\ 3& -6 \end{pmatrix}\\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-ff29d8b108fd5452cfe3a8f35695be6c_l3.png)
Order of A is 2 × 2
![]()
Consider the second order minor
![Rendered by QuickLaTeX.com \begin{vmatrix} 1 & -1\\ 3 & -6 \end{vmatrix} =-6- (-3) \\[.25 cm] =-6+3=-3 \neq 0 \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-488731ecc04c1655bba847c9366304c0_l3.png)
There is a minor of order 2, which is not zero. ![]()
![Rendered by QuickLaTeX.com 1. (iii) \:\begin{pmatrix} 1 &4 \\ 2& 8 \end{pmatrix}\\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-7e3ec283bd124198fec480d78df98a6e_l3.png)
Order of A is 2 × 2
![]()
Consider the second order minor
![Rendered by QuickLaTeX.com \begin{vmatrix} 1 & 4\\ 2 & 8 \end{vmatrix} =0 \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-fa1e3fa7a75ed802efa1913dd537d0a4_l3.png)
Consider a first order minor ![]()
There is a minor of order 1, which is not zero. ![]()
![Rendered by QuickLaTeX.com 1.(iv) \: \begin{bmatrix} 2 & -1 & 1 \\ 3 & 1 & -5 \\ 1 & 1 & 1 \end{bmatrix}\\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-f24c5fc0e1eead982ddf0c45405c53d3_l3.png)
Order of A is 3 × 3
![]()
Consider the third order minor
![Rendered by QuickLaTeX.com = 2(1 + 5) - (-1) (3 + 5) + 1 (3 - 1)\\[.25 cm] = 2 (6) + 1(8) + 1(2) \\[.25 cm] = 12 + 8 + 2 \\[.25 cm] =22 \neq 0 \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-9377a34fcce0bcf8439034b6883fc6dd_l3.png)
There is a minor of order 3, which is not zero. ![]()
![Rendered by QuickLaTeX.com 1. (v) \: \begin{bmatrix} -1 & 2 & -2 \\ 4 & -3 & 4 \\ -2 & 4 & -4 \end{bmatrix}\\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-0829e604e8bde5cf5f3efb4ef327400e_l3.png)
Order of A is 3 × 3
![]()
Consider the third order minor ![Rendered by QuickLaTeX.com \begin{bmatrix} -1 & 2 & -2 \\ 4 & -3 & 4 \\ -2 & 4 & -4 \end{bmatrix}\\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-708fe647facbe392415949d323d3a81c_l3.png)
![Rendered by QuickLaTeX.com =-1(12 - 16) - 2 (-16 + 8) - 2 (16 - 6)\\[.25 cm] = -1(-4) - 2 (-8) - 2 (10) \\[.25 cm] = 4 + 16 - 20 \\[.25 cm] = 0 \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-408ffd8ca0718dc41b82efe7abdeb0fd_l3.png)
Since the third order minor vanishes, ![]()
Consider a second order minor ![Rendered by QuickLaTeX.com \begin{vmatrix} -1 & 2\\ 4 & -3 \end{vmatrix} =3-8=-5 \neq 0 \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-d75b4074b32cd2ce380930874233408b_l3.png)
There is a minor of order 2, which is not zero. ![]()
![Rendered by QuickLaTeX.com 1. (vi) \: \begin{bmatrix} 1 & 2 & -1 & 3 \\ 2 & 4 & 1 & -2 \\ 3 & 6 & 3 & -7 \end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-de391e2a86cab804198a3a6d23eefb41_l3.png)
Order of A is 3 × 4
![]()
| Matrix A | Elementary Transformation |
![]() | |
![]() | |
![]() |
The above matrix is in echelon form. The number of non zero rows is 2.
![]()
1. (vii) ![Rendered by QuickLaTeX.com \begin{bmatrix} 3 & 1 & -5 & -1 \\ 1 & -2 & 1 & -5 \\ 1 & 5 & -7 & 2 \end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-2c57b9ec03651ab5cad6fa286b939fd7_l3.png)
Order of A is 3 × 4
![]()
Consider the third order minors ![Rendered by QuickLaTeX.com \begin{bmatrix} 3 & 1 & -5 \\ 1 & -2 & 1 \\ 1 & 5 & -7 \end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-3bbb15db7d17bf99204a3a1f27aab909_l3.png)
![Rendered by QuickLaTeX.com = 3 (14 - 5) - 1 (- 7 - 1) - 5 (5 + 2)\\[.25 cm] = 3 (9) - 1 (-8) - 5 (7)\\[.25 cm] = 27 + 8 - 35\\[.25 cm] = 0 \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-246bf54fbbe377db3b031056e9b50780_l3.png)
Consider the third order minors ![Rendered by QuickLaTeX.com \begin{bmatrix} 1 & -5 & 1 \\ -2 & 1 & -5 \\ 5 & -7 & 2 \end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-c9da89b7162a910894c446adfc809e92_l3.png)
![Rendered by QuickLaTeX.com = 1 (2-35) + 5 (-4 + 25) - 1 (14 - 5)\\[.25 cm] = 1(-33)+5(21)-1(9)\\[.25 cm] = -33+105-9\\[.25 cm] = 63 \neq 0 \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-fc44cf298b6c64e14180febc91d859d2_l3.png)
There is a minor of order 3, which is not zero. ![]()
1. (viii) ![Rendered by QuickLaTeX.com \begin{bmatrix} 1 & -2 & 3 & 4 \\ -2 & 4 & -1 & -3 \\ -1 & 2 & 7 & 6 \end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-cf2fc7deb807e869b3319c8d27c651f0_l3.png)
Order of A is 3 × 4
![]()
| Matrix | Elementary Transformation |
![]() | |
![]() | |
![]() |
The above matrix is in echelon form. The number of non zero rows is 2.
![Rendered by QuickLaTeX.com 2. \:If \: A =\: \begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix} \: and \: B= \begin{bmatrix} 1 & -2 & 3 \\ -2 & 4 & -6 \\ 5 & 1 & -1 \end{bmatrix} \: then \: find \: the \: rank \: of \: AB \: and \: the \: rank \: of \: BA. \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-82193262899aaef1e68d2a263041887e_l3.png)
![Rendered by QuickLaTeX.com AB = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix} \begin{bmatrix} 1 & -2 & 3 \\ -2 & 4 & -6 \\ 5 & 1 & -1 \end{bmatrix}\\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-1660eb05815515d5ba3f59c6e6d769f5_l3.png)
![Rendered by QuickLaTeX.com = \begin{bmatrix} 1-2-5 & -2+4-1 & 3-6+1 \\ 2+6+20 & -4-12+4 & 6+18-4 \\ 3+4+15 & -6-8+3 & 9+12-3 \end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-00dd0389a98a5e89958762ac45ae79bb_l3.png)
![Rendered by QuickLaTeX.com AB = \begin{bmatrix} -6 & 1 & -2 \\ 28 & -12 & 20 \\ 22 & -11 & 18 \end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-0c490cbd32608ff39302b8044f39b21b_l3.png)
![Rendered by QuickLaTeX.com BA = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 4 & -6 \\ 5 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-76e5b02a9c1abd6504861b77e14a56f0_l3.png)
![Rendered by QuickLaTeX.com = \begin{bmatrix} 1-4+9 & -1+6-6 & -1-8+9 \\ -2+8-18 & -2-12+12 & 2+16-18 \\ 5+2-3 & 5-3+2 & -5+4-3 \end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-427907e1a264b62d43ca4d65bdb88b68_l3.png)
![Rendered by QuickLaTeX.com BA = \begin{bmatrix} 6 & 1 & 0 \\ -12& -2 & 0 \\ 4& 4& -4 \end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-41be20a250c0c8d1f2f964f42a866eb0_l3.png)
Rank of AB:
Order of AB =3 x 3
Order of ![]()
Consider the third order minor, ![Rendered by QuickLaTeX.com AB = \begin{bmatrix} -6 & 1 & -2 \\ 28 & -12 & 20 \\ 22 & -11 & 18 \end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-0c490cbd32608ff39302b8044f39b21b_l3.png)
![Rendered by QuickLaTeX.com = -6(-216 + 220) -1(504 - 440) - 2(-308 + 264)\\[.25 cm] = - 6(4) - 1(64) - 2(-44)\\[.25 cm] = -24 - 64+ 88\\[.25 cm] = 0 \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-c84b049f41a7f67b906c1789b84444c8_l3.png)
Since the third order minor vanishes, we consider the 2nd order minor.
![Rendered by QuickLaTeX.com \large \begin{vmatrix} 1 & -2\\ -12 & 20 \end{vmatrix}=20-24\\[.25 cm] =-4 \neq 0 \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-dea5d2fca2c23ce4313f16ccf156954c_l3.png)
There is a minor of order 2, which is not zero. ![]()
Rank of BA:
order of BA = 3 x 3
Order of ![]()
Consider the third order minor, ![Rendered by QuickLaTeX.com BA = \begin{bmatrix} 6 & 1 & 0 \\ -12& -2 & 0 \\ 4& 4& -4 \end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-41be20a250c0c8d1f2f964f42a866eb0_l3.png)
![Rendered by QuickLaTeX.com = 6(8 - 0) - 1(48 - 0) + 0(-48 + 8)\\[.25 cm] = 6(8) - 1(48) + 0(-40)\\[.25 cm] = 48 - 48 + 0 \\[.25 cm] = 0 \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-5986d643d08328aa3f2a4baab1da6026_l3.png)
Since the third order minor vanishes, ![]()
Now, let us consider the second order minors,
Consider a second order minor ![Rendered by QuickLaTeX.com \large \begin{vmatrix} -12 & -2\\ 4 & 4 \end{vmatrix}=-48+8\\[.25 cm] =-40 \neq 0 \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-33fc680d8650f7e9944acdced35ab7bb_l3.png)
There is a minor of order 2, which is not zero. ![]()
3. Solve the following system of equations by rank method: x + y + z = 9, 2x + 5y + 7z = 52, 2x − y −z= 0
The matrix equation is ![Rendered by QuickLaTeX.com \begin{bmatrix} 1 & 1 & 1 \\ 2 & 5 & 7 \\ 2 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}= \begin{bmatrix} 9 \\ 52 \\ 0 \end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-69961ed1ac19a22e461dd169032d56f3_l3.png)
| Augmented Matrix | Elementary Transformation |
![]() | |
![]() | |
The matrix is in the echelon form with three non-zero rows.
![]()
Therefore, the given system is consistent and has a unique solution.
![Rendered by QuickLaTeX.com \begin{bmatrix} 1 & 1 & 1 \\ 0 & 3 & 5 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} 9 \\ 34 \\ 16 \end{bmatrix} \\[.25cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-001c27465ae5e45f272a7a41f02ecfd1_l3.png)
![Rendered by QuickLaTeX.com x + y + z = 9\cdots (1)\\[.25 cm] 3y + 5z = 34 \cdots (2)\\[.25 cm] 2z = 16 \cdots (3)\\[.25 cm] z = 8 \\[.25 cm] Substitute \: z = 8 \: in \cdots (2) \\[.25 cm] 3y + 5 (8) = 34 \\[.25 cm] 3y + 40 = 34 \\[.25 cm] 3y = 34 - 40 \\[.25 cm] 3y = -6 \\[.25 cm] y = -2 \\[.25 cm] Substitute \: y = -2 \: and \: z = 8 \: in \cdots (1) \\[.25 cm] x = (-2) + 8 = 9 \\[.25 cm] x + 6 = 9 \\[.25 cm] x = 9 - 6 \\[.25 cm] x = 3 \\[.25 cm] \therefore x = 3, y = -2, z = 8 \\[.25cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-d914514e597524bf35978aa6d12f53a1_l3.png)
4. Show that the equations 5x + 3y + 7z = 4, 3x + 26y + 2z = 9, 7x + 2y + 10z = 5 are consistent and solve them by rank method.
Solution:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5
The matrix equation is ![Rendered by QuickLaTeX.com \begin{bmatrix} 5 & 3 & 7 \\ 3 & 26 & 2 \\ 7 & 2 & 10 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}= \begin{bmatrix} 4 \\ 9 \\ 5 \end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-f01b60853d3be249e5ba345d1d393015_l3.png)
| Augmented Matrix | Elementary Transformation |
![]() | |
![]() | |
The matrix is in the echelon form with two non-zero rows.
![]()
The matrix equation is ![Rendered by QuickLaTeX.com \begin{bmatrix} 5 & 3 & 7 \\ 0 & 121& -11 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 33 \\ 0 \end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-ef9b2d9bbf0eca8466920851e708166a_l3.png)
![Rendered by QuickLaTeX.com 5x + 3y + 7z = 4\cdots (1)\\[.25 cm] 121y -11z = 33 \cdots (2)\\[.25 cm] Put \: z = k \cdots (3)\\[.25 cm] Substitute \: z = k \: in \cdots (2) \\[.25 cm] 121y -11k = 33 \cdots \: divide \: by \: 11 \\[.25 cm] 11y -k = 3 \\[.25 cm] 11y = 3 + k \\[.25 cm] y=\frac{3+k}{11} \\[.5 cm] 5x+3(\frac{3+k}{11})+7k=4 \\[.5 cm] 5x+(\frac{9+3k}{11})+7k=4 \\[.5 cm] 5x+(\frac{9+3k+77k}{11})=4 \\[.5 cm] 5x+(\frac{9+80k}{11})=4 \\[.5 cm] 5x = 4 -(\frac{9+80k}{11})\\[.5 cm] 5x=(\frac{44-9-80k}{11})\\[.5 cm] 5x=(\frac{35-80k}{11})\\[.5 cm] 5x=5(\frac{7-16k}{11})\\[.5 cm] x=(\frac{7-16k}{11})\\[.5 cm] \therefore x=\frac{7-16k}{11}; \: y=\frac{3+k}{11}; \: z=k \:where \: k \in R \\[.25cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-d17f9d52dad40b6c3fbd3324fd0170fe_l3.png)
5. Show that the following system of equations have unique solutions: x + y + z = 3, x + 2y + 3z = 4, x + 4y + 9z = 6 by rank method.
The matrix equation is ![Rendered by QuickLaTeX.com \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}= \begin{bmatrix} 3 \\ 4 \\ 6 \end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-520090da55b488b3eb1106dd11dcca50_l3.png)
| Augmented Matrix | Elementary Transformation |
![]() | |
![]() | |
![]() | |
The matrix is in the echelon form with three non-zero rows.
![]()
Therefore, the given system is consistent and a unique solution.
6. For what values of the parameter λ, will the following equations fail to have unique solution:
3x – y + λz = 1, 2x + y + z = 2, x + 2y – λz = -1.
The matrix equation is ![Rendered by QuickLaTeX.com \begin{bmatrix} 3 & -1 & \lambda \\ 2 & 1 & 1 \\ 1 & 2 & -\lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}= \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-8c49862e094b77aefdbacb844c3f80c8_l3.png)
| Augmented Matrix | Elementary Transformation |
![]() | |
![]() | |
![]() | |
![]() |
![]()
![]()
![]()
![]()
7. The price of three commodities. X, Y, and Z are x,y, and z respectively Mr. Anand purchases 6 units of Z and sells 2 units of Y. Mr. Amar purchases a unit of Y and sells 3 units of X and 2 units of Z. Mr. Amit purchases a unit of X and sells 3 units of Y and a unit of Z. In the process they earn Rs 5,000/-, Rs 2,000/- and Rs 5,500/- respectively. Find the prices per unit of three commodities by the rank method.
Let the equations be:
2x + 3y – 6z = 5000
3x – y + 2z = 2000
-x + 3y + z = 5500
The matrix equation is ![Rendered by QuickLaTeX.com \begin{bmatrix} 2 & 3 & -6 \\ 3 & -1 & 2 \\ -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}= \begin{bmatrix} 5000\\ 2000 \\ 5500 \end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-10513597c861c18de23fc94854cae425_l3.png)
| Augmented Matrix | Elementary Transformation |
![]() | |
![]() | |
![]() | |
![]() | |
![]() | |
The given system is consistent and has a unique solution.
The matrix equation is ![Rendered by QuickLaTeX.com \begin{bmatrix} -1 & 4 & -8 \\ 0 & 1 & -2 \\ 0 & 0 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}= \begin{bmatrix} 3000\\ 1000 \\ 3500 \end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-0ca4ca4a82fdefbf6528093a757320cd_l3.png)
![Rendered by QuickLaTeX.com -x + 4y - 8z =3000 \cdots (1)\\[.25 cm] y - 2 z = 1000 \cdots (2)\\[.25 cm] 7z = 3500 \cdots (3)\\[.25 cm] z=500 \\[.25 cm] Substituting \: z = 500 \: in \:Eq (2) \\[.25 cm] y - 2 (500) = 1000 \\[.25 cm] y - 1000 = 1000 \\[.25 cm] y = 2000 \\[.25 cm] Substituting \: z=500 \: and \: y = 2000 \: in \: Eq (1) \\[.25 cm] -x + 4 (2000) - 8 (500) = 3000 \\[.25 cm] -x + 8000 - 4000 = 3000 \\[.25 cm] - x = 3000 - 4000 \\[.25 cm] x = 1000 \\[.25 cm] \therefore the \: price \: of \: the \: three \: commodities \: are \: x= 1000, \:y=2000; \: z=500 \\[.25cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-c4c6f6b3fc102c688cbf8db17ce0eb37_l3.png)
8. An amount of Rs 5,000/- is to be deposited in three different bonds bearing 6%, 7%, and 8% per year respectively. Total annual income is Rs 358/-, If the income from the first two investments is Rs 70/- more than the income from the third, then find the amount of investment in each bond by the rank method.
Let the three bonds be x, y, and z.
![]()
+
+
= ![]()
+
+
= ![]()
![]()
+
+ ![]()
+
=
+ ![]()
![]()
The matrix equation is ![Rendered by QuickLaTeX.com \begin{bmatrix} 1 & 1 & 1 \\ 6 & 7 & 8 \\ 6 & 7 & -8 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}= \begin{bmatrix} 5000\\ 35800 \\ 7000 \end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-5342d8c36d0a10a21a033683cb5ec0f2_l3.png)
| Augmented Matrix | Elementary Transformation |
![]() | |
![]() | |
![]() | |
The given system is consistent and has a unique solution.
The matrix equation is ![Rendered by QuickLaTeX.com \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & -16 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}= \begin{bmatrix} 5000\\ 5800 \\ -28800 \end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-463e6ce06a97758833da48461a7dd2a8_l3.png)
![Rendered by QuickLaTeX.com x + y + z = 5000 \cdots (1) \\[.25cm] y + 2z = 5800 \cdots (2) \\[.25cm] -16z = -28800 \cdots (3) \\[.25cm] z = \frac{-28800}{-16} \\[.25cm] z = 1800 \\[.25cm] Substituting \: z = 1800 \: in \: eqn (2) \\[.25cm] y + 2(1800) = 5800 \\[.25cm] y + 3600 = 5800 \\[.25cm] y = 5800 - 3600 \\[.25cm] y = 2200 \\[.25cm] Substituting \: z = 1800 \: y = 2200 \: in \: eqn (1) \\[.25cm] x + 2200 + 1800 = 5000 \\[.25cm] x + 4000 = 5000 \\[.25cm] x = 5000 - 4000 \\[.25cm] x = 1000 \\[.25cm] \therefore the \: amount \: of \: investment \: in \: each \: bond\: is \: x= 1000, \:y=2200; \: z=1800 \\[.25cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-2ab7d80852596ec9060900ae9c9d87e0_l3.png)
If you have any doubts or questions, please reach out to us in the comments section.
![Rendered by QuickLaTeX.com A= \begin{bmatrix}1 & 2 & -1 & 3 \\2 & 4 & 1 & -2 \\3 & 6 & 3 & -7\end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-e96ebe3858ed4be7de235838e41df448_l3.png)
![Rendered by QuickLaTeX.com A= \begin{bmatrix}1 & 2 & -1 & 3 \\0 & 0 & 3 & -8 \\0 & 0 & 6 & -16\end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-d28ab7c1f28a63c0d95b82da504fece1_l3.png)
![Rendered by QuickLaTeX.com A= \begin{bmatrix}1 & 2 & -1 & 3 \\0 & 0 & 3 & -8 \\0 & 0 & 0 & 0\end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-3d7c3bec38c32a6eaffb1032c2292a5a_l3.png)
![Rendered by QuickLaTeX.com A = \begin{bmatrix}1 & -2 & 3 & 4 \\-2 & 4 & -1 & -3 \\-1 & 2 & 7 & 6\end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-78973b943e1adf36a6a87ba0bd469316_l3.png)
![Rendered by QuickLaTeX.com A = \begin{bmatrix}1 & -2 & 3 & 4 \\0 & 0 & 5 & 5 \\0 & 0 & 10 & 10\end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-c87f253491221581512d1bd2aba48052_l3.png)
![Rendered by QuickLaTeX.com A = \begin{bmatrix}1 & -2 & 3 & 4 \\0 & 0 & 5 & 5 \\0 & 0 & 0 & 0\end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-6cf4fee9a815caa7cbb778b1f73fe7ab_l3.png)
![Rendered by QuickLaTeX.com \begin{bmatrix}1 & 1 & 1 & 9 \\2 & 5 & 7 & 52 \\2 & -1 & -1 & 0\end{bmatrix}\\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-482f41035fc28e624292674f1474ea67_l3.png)
![Rendered by QuickLaTeX.com \begin{bmatrix}1 & 1 & 1 & 9 \\0 & 3 & 5 & 34 \\0 & -3 & -3 & -18\end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-3d5d0545ac73288ed588e8cd972abfbc_l3.png)
![Rendered by QuickLaTeX.com \begin{bmatrix}5 & 3 & 7 & 4 \\0& 121& -11 & 33 \\0 & -11 & 1 & -3\end{bmatrix}\\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-dd367ee22a73ac3dc5fc3d1581fc9f15_l3.png)
![Rendered by QuickLaTeX.com \begin{bmatrix}5 & 3 & 7 & 4\\0& 121& -11 & 33 \\0 & 0 & 0 & 0\end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-33e00329be07fbf21fc16b1d3df22f54_l3.png)
![Rendered by QuickLaTeX.com \begin{bmatrix}1 & 1 & 1 & 3 \\1& 2& 3& 4 \\1 & 4 & 9 & 6\end{bmatrix}\\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-ee811727c8cd59d31dbb87cbecff26ca_l3.png)
![Rendered by QuickLaTeX.com \begin{bmatrix}1 & 1 & 1 & 3 \\0& 1& 2& 1 \\0 & 3 & 8 & 3\end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-59d3b29da4b76473fa1b78a007ed33b6_l3.png)
![Rendered by QuickLaTeX.com \begin{bmatrix}1 & 1 & 1 & 3 \\0& 1& 2& 1 \\0 & 0 & 2 & 0\end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-874bc0324fa3f958f633514af9ed38ca_l3.png)




![Rendered by QuickLaTeX.com \begin{bmatrix}2 & 3 & -6 & 5000 \\3 & -1 & 2 & 2000 \\-1 & 3 & 1 & 5500\end{bmatrix}\\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-fd0dca646b1796e6c807c988b92a1eba_l3.png)
![Rendered by QuickLaTeX.com \begin{bmatrix}-1 & 4 & -8 & 3000\\3 & -1 & 2& 2000\\-1 & 3 & 1 & 5500\end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-3a67cf61d5a24fafe779b43b69d440f8_l3.png)
![Rendered by QuickLaTeX.com \begin{bmatrix}-1 & 4 & -8 & 3000 \\0& 11& -22& 11000 \\-1 & 3 & 1 & 5500\end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-8646143450ff52b388b96df050f59f93_l3.png)
![Rendered by QuickLaTeX.com \begin{bmatrix}-1 & 4 & -8 & 3000 \\0& 1& -2& 1000 \\0 & -1 & 9 & 2500\end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-1078dcf372cfa414b4128610a8877802_l3.png)
![Rendered by QuickLaTeX.com \begin{bmatrix}-1 & 4 & -8 & 3000 \\0& 1& -2& 1000 \\0 & 0 & 7 & 3500\end{bmatrix} \\[.25 cm]](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-3160eebf51bc0cf401067ea6908fdd51_l3.png)



Leave a Reply