Dear Samacheer Kalvi Students, here are the answers for book back exercise 2.7 in Business Maths Chapter 2 Integral Calculus I. If you have any doubts, please reach out to us in the comments section.
Click here if you want to revise:
Important Formulas in Integral Calculus I
Text Book Solutions for Integral Calculus I Exercise 2.1
Text Book Solutions for Integral Calculus I Exercise 2.2
Text Book Solutions for Integral Calculus I Exercise 2.3
Text Book Solutions for Integral Calculus I Exercise 2.4
Text Book Solutions for Integral Calculus I Exercise 2.5
Text Book Solutions for Integral Calculus I Exercise 2.6
Text Book Solutions for Integral Calculus I Exercise 2.8
Text Book Solutions for Integral Calculus I Exercise 2.9
Text Book Solutions for Integral Calculus I Exercise 2.10
Text Book Solutions for Integral Calculus I Exercise 2.11
Text Book Solutions for Integral Calculus I Exercise 2.12 (MCQ)
Integral Calculus I Exercise 2.7 Text Book Solutions
Integrate the following with respect to x
![]()
![]()
![]()



![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()

![]()


![]()
![]()




![]()
![]()
![]()
![]()
![]()
![]()
![]()




![]()
![]()
![]()
![]()






![]()
![]()
![]()
![]()

![Rendered by QuickLaTeX.com =2\left [ \left (x+\dfrac{3}{2} \right )^{2} -\dfrac{9}{4}-4\right ]\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-575b54180a03db79885ee78487f71bb0_l3.png)
![Rendered by QuickLaTeX.com =2\left [ \left (x+\dfrac{3}{2} \right )^{2} -\dfrac{25}{4}\right ]\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-6be891a13d35affbcdd0f111b3a2720a_l3.png)
![Rendered by QuickLaTeX.com =2\left [ \left (x+\dfrac{3}{2} \right )^{2} -\left (\dfrac{5}{2} \right )^{2}\right ]\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-2867fd58b6fc1a3008d49ee8a0416939_l3.png)
![Rendered by QuickLaTeX.com I=\int \dfrac{dx}{2\left [ \left (x+\dfrac{3}{2} \right )^{2} -\left (\dfrac{5}{2} \right )^{2}\right ]}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-b1c6fcf7c1e091ec09dd812aa0611cd8_l3.png)



![]()
![]()
![]()
![]()
![]()
![]()



![]()
![]()

![]()

![]()
![]()
![]()
![]()
![]()
![]()

![]()
![]()
![]()
![]()










![]()
![]()
![]()

![]()
![]()
![]()
![]()
![]()
![]()
![]()






![]()



![]()
![]()
![]()

![]()
![]()
![]()
![]()

![Rendered by QuickLaTeX.com =\dfrac{1}{2} \left [x\sqrt{4x^{2}-5}-\dfrac{5}{2}log \left |2x+\sqrt{4x^{2}-5} \right | \right ]+c\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-f9e01564168179aca6431f261008216f_l3.png)
![]()
![]()
![]()

![]()

![Rendered by QuickLaTeX.com =2 \left [\left ( x+1 \right )^{2}-1+\dfrac{1}{2}\right ]\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-bb9a306040a494129e4c9fbeb010c7fd_l3.png)
![Rendered by QuickLaTeX.com =2 \left [\left ( x+1 \right )^{2}-\dfrac{1}{2}\right ]\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-1c39dd3ff13fdb80f3bbd9f28592b070_l3.png)
![Rendered by QuickLaTeX.com =2 \left [\left ( x+1 \right )^{2}-\left (\dfrac{1}{\sqrt{2}} \right )^{2}\right ]\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-fe5b5fc74df5e1f99ed8ea5a145914b8_l3.png)
![Rendered by QuickLaTeX.com I = \int \sqrt{2 \left [\left ( x+1 \right )^{2}-\left (\dfrac{1}{\sqrt{2}} \right )^{2}\right ]}\: dx\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-5f2e01968c8fa09a7d5085a56a58f116_l3.png)
![Rendered by QuickLaTeX.com =\sqrt{2\int }\sqrt{ \left [\left ( x+1 \right )^{2}-\left (\dfrac{1}{\sqrt{2}} \right )^{2}\right ]}\: dx\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-c78a40b12e96b43495e565a21d9fd260_l3.png)
![Rendered by QuickLaTeX.com =\sqrt{2\int }\sqrt{ \left [\left ( x+1 \right )^{2}-\left (\dfrac{1}{\sqrt{2}} \right )^{2}\right ]}\: dx\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-c78a40b12e96b43495e565a21d9fd260_l3.png)
![Rendered by QuickLaTeX.com \sqrt{2}\left (\dfrac{x+1}{2} \right )\sqrt{ \left [\left ( x+1 \right )^{2}-\left (\dfrac{1}{\sqrt{2}} \right )^{2}\right ]}-\dfrac{\left (\frac{1}{\sqrt{2}} \right )^{2}}{2} log \left |\left ( x+1 \right ) + \sqrt{\left (x+1 \right )^{2}- \left (\dfrac{1}{\sqrt{2}} \right )^{2}} \right |+c\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-ff2aeac1b5790ca76fa56cca2b0e9f8e_l3.png)

![]()
![]()


![]()
![]()
![]()
![]()
![]()
![]()
If you have any doubts on the topic, please let us know in the comments section.
Leave a Reply