Dear Samacheer Kalvi Students, here are the answers for book back exercise 2.7 in Business Maths Chapter 2 Integral Calculus I. If you have any doubts, please reach out to us in the comments section.
Click here if you want to revise:
Important Formulas in Integral Calculus I
Text Book Solutions for Integral Calculus I Exercise 2.1
Text Book Solutions for Integral Calculus I Exercise 2.2
Text Book Solutions for Integral Calculus I Exercise 2.3
Text Book Solutions for Integral Calculus I Exercise 2.4
Text Book Solutions for Integral Calculus I Exercise 2.5
Text Book Solutions for Integral Calculus I Exercise 2.6
Text Book Solutions for Integral Calculus I Exercise 2.7
Text Book Solutions for Integral Calculus I Exercise 2.9
Text Book Solutions for Integral Calculus I Exercise 2.10
Text Book Solutions for Integral Calculus I Exercise 2.11
Text Book Solutions for Integral Calculus I Exercise 2.12 (MCQ)
Exercise 2.8
I. Using the second fundamental theorem, evaluate the following:

![Rendered by QuickLaTeX.com \displaystyle \int_{0}^{1}e^{2x} \: dx ={\left [\dfrac{e^{2x}}{2} \right ]_{0}}^{1}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-fc19b19945393f4f189ea017220eff85_l3.png)
![]()
![]()
![]()



![Rendered by QuickLaTeX.com = \left [\dfrac{\left (1-4x \right )^{\frac{1}{2}+1}}{(-4)\left ( \frac{1}{2}+1 \right )} \right ]_{0}^{\frac{1}{4}}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-ef533da0b73424c0dfcf89e29741ff5c_l3.png)

![Rendered by QuickLaTeX.com = \left [\dfrac{\left (1-4x \right )^{\frac{1}{2}+1}}{(-4)\left ( \frac{1}{2}+1 \right )} \right ]_{0}^{\frac{1}{4}}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-ef533da0b73424c0dfcf89e29741ff5c_l3.png)
![Rendered by QuickLaTeX.com = \left [\dfrac{\left (1-4x \right )^{\frac{3}{2}}}{(-4)\left ( \frac{3}{2} \right )} \right ]_{0}^{\frac{1}{4}}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-1f75c9283eb55f0a242c397059e523df_l3.png)
![Rendered by QuickLaTeX.com = \left [\dfrac{\left (1-4x \right )^{\frac{3}{2}}}{(-6)} \right ]_{0}^{\frac{1}{4}}](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-b383aee472eea0b00d2b732bb179fa85_l3.png)
![]()
![]()
![]()
![]()


![]()
![]()
![]()


![]()
![Rendered by QuickLaTeX.com =\dfrac{1}{2} \bigg[ log \left | t \right |\bigg ] _{2}^{5}](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-1550ae5f9a130f3d6657bfaff8397040_l3.png)
![]()
![]()


![]()
![]()


![Rendered by QuickLaTeX.com = \bigg [ log \left |t \right | \bigg ]_{2}^{1+e^{x}}](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-27b6c9380be9724a88759327b09cf18b_l3.png)
![]()



![]()
![]()
![]()



![Rendered by QuickLaTeX.com =\dfrac{1}{2}\bigg[ e^{t} \bigg]_{0}^{1}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-a0bc7ee0ea506348dc6991db7af7266d_l3.png)
![]()
![]()


![]()
![]()



![Rendered by QuickLaTeX.com =\bigg[\dfrac{t^{-2}}{-2} \bigg ]_{1}^{2} \\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-5ef1939ef3858d7597311ac949a22c51_l3.png)
![Rendered by QuickLaTeX.com =\dfrac{-1}{2} \bigg[\dfrac{1}{t^{2}} \bigg]_{1}^{2}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-bbab35b1ad41c5cf4a338f636adf52c5_l3.png)
![Rendered by QuickLaTeX.com =\dfrac{-1}{2} \bigg[\dfrac{1}{4} -1 \bigg]\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-64820926cdd07e7172105bf54358b82f_l3.png)

![]()


![]()
![]()


![Rendered by QuickLaTeX.com =\bigg[log\left | t \right | \bigg]_{5}^{11}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-e016b6103d1612f6ce19288f70cacba7_l3.png)
![]()
![]()




![Rendered by QuickLaTeX.com =\sqrt{2}\bigg[\dfrac{sin\frac{x}{2}}{\frac{1}{2}} \bigg]_{0}^{\frac{\pi}{2}}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-09f359fe1bbf1995ab2deacccefaf148_l3.png)
![Rendered by QuickLaTeX.com =2\sqrt{2} \bigg[sin\dfrac{x}{2} \bigg]_{0}^{\frac{\pi}{2}}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-e908737aeecda775ff67b143f46a156c_l3.png)
![]()

![]()




![Rendered by QuickLaTeX.com =\bigg[log \: x-\frac{x^{-1}}{-1} \bigg]_{1}^{2}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-9f037b5a0af7d95d1ccd67bd22f5d084_l3.png)
![Rendered by QuickLaTeX.com =\bigg[log \: x+\frac{1}{x} \bigg]_{1}^{2}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-586dac5c8bf8adbc4de80f00ed661fbe_l3.png)
![Rendered by QuickLaTeX.com =\bigg[log \: 2+\frac{1}{2} \bigg] - \bigg[log \: 1+\frac{1}{1} \bigg]\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-f5512ff94495ab19e2cf1a22568414ae_l3.png)
![]()
![]()
![]()
![]()
![]()
II. Evaluate the following:




![Rendered by QuickLaTeX.com =\bigg[\dfrac{4x^{2}}{2}+3x \bigg]_{1}^{2}+\bigg[\dfrac{3x^{2}}{2}+5x \bigg]_{2}^{4}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-1240f9cf19a404943e3571488051b629_l3.png)
![Rendered by QuickLaTeX.com =\bigg[2x^{2}+3x \bigg]_{1}^{2}+\bigg[\dfrac{3x^{2}}{2}+5x \bigg]_{2}^{4}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-e7f65006e28be32f204216f5a89d74fc_l3.png)
![Rendered by QuickLaTeX.com =\bigg[2x^{2}+3x \bigg]_{1}^{2}+\bigg[\dfrac{3x^{2}}{2}+5x \bigg]_{2}^{4}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-e7f65006e28be32f204216f5a89d74fc_l3.png)
![]()
![]()
![]()
![]()



![]()


![Rendered by QuickLaTeX.com =\bigg[3x-\dfrac{2x^{2}}{2}-\dfrac{x^{3}}{3} \bigg]_{0}^{1}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-377c08ff2df3fb28d00d2eb98677f0a1_l3.png)

![]()
![]()


![Rendered by QuickLaTeX.com =\bigg[\dfrac{x^{3}}{3}+\dfrac{2x^{2}}{2}-3x \bigg]_{1}^{2}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-bd3bdf98e09c89b1335833b68ee5a79a_l3.png)
![Rendered by QuickLaTeX.com =\bigg[\dfrac{x^{3}}{3}+ {x^{2}}-3x \bigg]_{1}^{2}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-facbac059d443329c2dce5b618e1a2f9_l3.png)
![Rendered by QuickLaTeX.com =\bigg[\dfrac{x^{3}}{3}+ {x^{2}}-3x \bigg]_{1}^{2}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-facbac059d443329c2dce5b618e1a2f9_l3.png)

![]()
![]()
![]()
![]()
![]()
![]()
![]()



![Rendered by QuickLaTeX.com =\bigg[-\dfrac{x^{2}}{2} \bigg]_{-1}^{0} + \bigg[\dfrac{x^{2}}{2} \bigg]_{0}^{1} \\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-a7f79e6f50e2331e7c81fec5a9b1bf84_l3.png)

![Rendered by QuickLaTeX.com =\dfrac{-1}{2} \bigg[x^{2} \bigg]_{-1}^{0} +\dfrac{1}{2} \bigg[x^{2} \bigg]_{0}^{1} \\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-73f10fb2fc0506ac9b5602db74d69995_l3.png)
![]()
![]()
![]()





![Rendered by QuickLaTeX.com =c \left [\dfrac{x^{2}}{2} \right ]_{0}^{1}=2\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-b746152e020dba18f423778d73120c59_l3.png)
![Rendered by QuickLaTeX.com =c \left [\dfrac{1}{2}-0 \right ]=2\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-39e710d757dc7c3e71925ae35ab04fee_l3.png)
![]()
![]()
If you have any questions on the topic, let us know in the comments section.
Leave a Reply