Dear Samacheer Kalvi Students, here are the answers for book back exercise 2.9 in Business Maths Chapter 2 Integral Calculus I. If you have any doubts, please reach out to us in the comments section.
Click here if you want to revise:
Important Formulas in Integral Calculus I
Text Book Solutions for Integral Calculus I Exercise 2.1
Text Book Solutions for Integral Calculus I Exercise 2.2
Text Book Solutions for Integral Calculus I Exercise 2.3
Text Book Solutions for Integral Calculus I Exercise 2.4
Text Book Solutions for Integral Calculus I Exercise 2.5
Text Book Solutions for Integral Calculus I Exercise 2.6
Text Book Solutions for Integral Calculus I Exercise 2.7
Text Book Solutions for Integral Calculus I Exercise 2.8
Text Book Solutions for Integral Calculus I Exercise 2.10
Text Book Solutions for Integral Calculus I Exercise 2.11
Text Book Solutions for Integral Calculus I Exercise 2.12 (MCQ)
Exercise 2.9
Evaluate the following using properties of definite integrals:


![]()
![]()
![]()
![]()
![]()
![]()


![]()
![]()
![]()
![]()
![]()
![]()



![Rendered by QuickLaTeX.com = \bigg[\theta-\dfrac{sin2\theta}{2} \bigg]_{_{0}}^{\frac{\pi}{2}}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-ba05353f5baee1d613d4bdae1651ce9e_l3.png)

![]()
![]()



![]()
![]()
![Rendered by QuickLaTeX.com =- \bigg[log (2-x)-log (2+x) \bigg] \\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-aac3c4f74589e284e413710d6bbd6698_l3.png)
![Rendered by QuickLaTeX.com f(-x)= - \bigg[log\left (\dfrac{2-x}{2+x} \right ) \bigg]\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-fcb5e88ae97a55d9ebea8ac264f3f7d4_l3.png)
![]()
![]()
![]()




![]()



![Rendered by QuickLaTeX.com =\bigg[x \bigg]_{_{0}}^{\frac{\pi}{2}}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-d203d62add72d180a6e17bc0075dc183_l3.png)
![]()
![]()






![]()

![Rendered by QuickLaTeX.com 2I=\displaystyle \int_{_{0}}^{1} \bigg[log \left (\dfrac{1-x}{x} \right )+ log \left (\dfrac{x}{1-x} \right ) \bigg]\: dx\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-6576cf9745a4f512e09b3893c09fe840_l3.png)


![]()
![]()







![Rendered by QuickLaTeX.com =\bigg[\dfrac{x^{\frac{-3}{4}+1}}{\frac{-3}{4}+1}-\frac{x^{(\frac{1}{4}+1)} }{\frac{1}{4}+1} \bigg]_{_{0}}^{1}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-11e8d98fd0c2e6279c155ca5ade262eb_l3.png)
![Rendered by QuickLaTeX.com =\bigg[\dfrac{x^{\frac{1}{4}}}{\frac{1}{4}}-\frac{x^{\frac{5}{4}} }{\frac{5}{4}} \bigg]_{_{0}}^{1}\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-c146213d0b32b1c654ff530793892939_l3.png)
![]()
![Rendered by QuickLaTeX.com =\bigg [4(1)-\frac{4}{5}(1) \bigg]- \bigg[0-0 \bigg]\\](https://mightyguru.in/wp-content/ql-cache/quicklatex.com-9bffc9d258347ddbe291f7dda3716b7d_l3.png)
![]()
![]()
If you have any questions in this exercise, please let us know in the comments.
Leave a Reply