Chapter 5: Numerical MethodsNovember 22, 2025 Maven Leave a Comment Welcome to your Chapter 5: Numerical Methods Name Email 1. $E f(x)=$ $E f(x-h)=$ $E f(x)=$ $E f(x+h)=$ $E f(x+2h)=$ None 2. $\nabla\equiv $ $1+E$ $1-E$ $1-E^{-1} $ $1+E^{-1} $ None 3. $\nabla f(a) =$ $ f(a)+f(a-h)$ $ f(a)-f(a+h)$ $ f(a)-f(a-h)$ $ f(a)$ None 4. $\Delta^{2}y_0=$ $y_2 − 2y_1 + y_0$ $y_2 + 2y_1 - y_0$ $y_2 +2y_1 + y_0$ $y_2 +y_1 + 2y_0$ None 5. If ‘n’ is a positive integer $\Delta^{n}\left[ \Delta^{-n} f(x)\right]$ $f(2x)$ $f(x+h)$ $f(x)$ $\Delta f(x)$ None 6. $E\equiv$ $1+\Delta$ $1-\Delta$ $1+\nabla $ $1-\nabla $ None 7. If h=1, then $\Delta x^{2}=$ $2x$ $2x-1$ $2x+1$ $1$ None 8. $\Delta f(x)=$ $f(x+h)$ $f(x)-f(x+h)$ $f(x+h)-f(x)$ $f(x)-f(x-h)$ None 9. If m and n are positive integers then $\Delta^{m}\Delta^{n} f(x)=$ $\Delta^{m+n} f(x)=$ $\Delta^{m} f(x)=$ $\Delta^{n} f(x)=$ $\Delta^{m-n} f(x)=$ None 10. If c is a constant then $\Delta c =$ $c$ $\Delta$ $\Delta^{2}$ $0$ None 11. For the given data find the value of $D^3 y_0 isx56911y12131518 $1$ $0$ $2$ $-1$ None 12. For the given points $(x_0, y_0) \; and\; (x_1, y_1)$ the Lagrange’s formula is $y(x)=\frac{x-x_1}{x_0-x_1}\; y_0\: +\; \frac{x-x_0}{x_1-x_0}\; y_1$ $y(x)=\frac{x_1-x}{x_0-x_1}\; y_0\: +\; \frac{x-x_0}{x_1-x_0}\; y_1$ $y(x)=\frac{x-x_1}{x_0-x_1}\; y_1\: +\; \frac{x-x_0}{x_1-x_0}\; y_0$ $y(x)=\frac{x_1-x}{x_0-x_1}\; y_1\: +\; \frac{x-x_0}{x_1-x_0}\; y_0$ None 13. Lagrange’s interpolation formula can be used for equal intervals only unequal intervals only both equal and unequal intervals none of these None 14. If $f(x)=x^{2}+2x+2$ and the interval of differencing is unity then $\Delta f(x)$ $2x-3$ $2x+3$ $x+3$ $x-3$ None Time's upRelated Posts:Chapter 12: Mathematical Methods for EconomicsChapter 12: Introduction to Statistical Methods and…Chapter 10 : Recruitment MethodsChapter 1: Introduction to Micro Economics
Leave a Reply