Chapter 6: Applications of Differentiation March 14, 2024 Maven Leave a Comment Welcome to the Chapter 6: Applications of Differentiation Name Email 1. Marginal revenue of the demand function p= 20–3x is 20–6x 20–3x 20+6x 20+3x None 2. If demand and the cost function of a firm are p= 2–x and C=$2x^{2}+2x+7$, then its profit function is $x^{2}+7$ $x^{2}-7$ $-x^{2}+7$ $-x^{2}-7$ None 3. If the average revenue of a certain firm is Rs. 50 and its elasticity of demand is 2, then their marginal revenue is Rs. 50 Rs. 25 Rs. 100 Rs. 75 None 4. Average fixed cost of the cost function C(x)$=2x^{3}+5x^{2}-14x+21$ is $\frac{2}{3}$ $\frac{5}{x}$ $\frac{-14}{x}$ $\frac{21}{x}$ None 5. If the demand function is said to be elastic, then $\begin{vmatrix} \eta_{d } \end{vmatrix}> 1$ $\begin{vmatrix} \eta_{d } \end{vmatrix}= 1$ $\begin{vmatrix} \eta_{d } \end{vmatrix}< 1$ $\begin{vmatrix} \eta_{d } \end{vmatrix}= 0$ None 6. For the cost function C $=\frac{1}{25}e^{5x}$, the marginal cost is $\frac{1}{25}$ $\frac{1}{5}e^{5x}$ $\frac{1}{125}e^{5x}$ $25e^{5x}$ None 7. Profit P(x) is maximum when MR = MC MR = 0 MC = AC TR = AC None 8. Instantaneous rate of change of y=$2x^{2}+5x$ with respect to x at x=2 is 4 5 13 9 None 9. The elasticity of demand for the demand function x $=\frac{1}{p}$ 0 1 $\frac{-1}{p}$ $\infty$ None 10. Relationship among MR, AR and $ \eta_{d}$ is $\eta_{d}=\frac{AR}{AR-MR}$ $\eta_{d}=AR-MR$ MR=AR$=\eta_{d}$ $AR=\frac{MR}{\eta_{d}}$ None 11. Average cost is minimum when Marginal cost = Marginal revenue Average cost = Marginal cost Average cost = Marginal revenue Average Revenue = Marginal cost None 12. If R = 5000 units / year, $C_{1}$= 20 paise, $C_{3}$= Rs 20, then EOQ is 5000 100 1000 200 None 13. If q=$1000+8p_{1}-p_{2}$, then $\frac{\partial q}{\partial p_{1}}$ is -1 8 1000 $1000- p_{2}$ None 14. If u$=4x^{2}+4xy+y^{2}+4x+32y+16$, then $\frac{\partial ^{2}u}{\partial x\partial y}$ is equal to 8x + 4y + 4 4 2y + 32 0 None 15. The demand function is always Increasing function Decreasing function Non-decreasing function Undefined function None 16. If u$=e^{x^{2}}$, then $\frac{\partial u}{\partial x}$ is equal to $2xe^{x^{2}}$ $e^{x^{2}}$ $2e^{x^{2}}$ 0 None 17. The maximum value of f(x)= sinx is 1 $\frac{\sqrt{3}}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{-1}{\sqrt{2}}$ None 18. If u$=x^{3}+3xy^{2}+y^{3}$, then $\frac{\partial ^{2}u}{\partial x\partial y}$ is equal to 3 6y 6x 2 None 19. If f(x,y) is a homogeneous function of degree n, then $x\frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$ is equal to (n–1)f n(n–1)f nf f None 20. A company begins to earn profit at Maximum point Breakeven point Stationary point Even point None Time's up Related Posts:Chapter 1: Applications of Matrices and DeterminantsChapter 1: Introduction to Micro EconomicsChapter 2. Consumption AnalysisChapter 3: Production Analysis
Leave a Reply